
non-linear ooclllations is t o  establish the barmdedness or unbouded- 

equntiao 
, -  . .. i 3c f rx' - c ( t )  

as tractable: on the assllrqption that e@) l a  even and periodic, it 

was sham that the equation ha8 an infinity of periodic solutioru. 

I n  t h i s  paper I shov that - 
[r: e 

x + zx' - p ( q  ' 4 (1.3) 

4/i$ 
nu* 

3 vkcre ;b@) is periodic, but is not necessarily even, dlso hum an 

i.?finity of periodic solutions. The main r e d t  la: 

s 
'3H.SXIRBM 2. Suppose that  p(r) 1s Contimvr~rly differentiableL - 3- i % z  

that it has lea& period r?W and that jo'"p(t1A.t = 0 
Then ror any msitlve intemr 

colutions with least period Zmw. 

m , (1.3) h u  an infinity of periodic 

-1s research vas supported i n  pad the United States A i r  Force through 
the Air Force Office of Scientific Research, Oflice of Aerospace Research, 
under contract No. AF 49(638)-=& part the Rational Aeronautics and 

of Iiaval Reeearch under Contract 100. m-36%(- 
Space AjMnistrntion under cookarzt I 0-  BA8w 34 9 ana in part by the Office 



2. 

Sefore we can at+-:> this we need a criterion for a 

, and this is to say we need 8 aeriodic solution 0: 

criterion for a topoi< : , : sl transformation T associated 
with (1.3) to have a fixed point. (Cf. f2.)'0ur T ha8 

the property of being area-preserving, a property which is 

in nany ways unwelcome since it precludes the use of the 

simpler methods appropriate to shrinking transformations. 

It does, however, allow of the following approach. Given 

a topological transformation u of the plane onto itself, 
we shall say a (Jordan) curve c I s  star-like for 

if 

(i) the origin does not lie on c , 
(ii) any ray (half-line) throwh p meets c - once 

at most, 

(iii) any point 7 g c is transformed by u 
a point on the sane ray QP, 

It is then evident from a figure (and we give the simple formal 

proof in 52) that we have 

- TEPO.SD~ 1. ~f U is an area-vreservina transfornation 

- and c is a simole closed curve which is star-like for u , 
- then there are at least 2 fixed voints o? c .  

The greater part of this paper will be devoted to showing 

that, for any positive integer m ,  there are simple closed 

curves which are star-like for Tm. Onoe this is achieved 
Pheoren 2 follows quickly. 

The wor!c gives a further application of the' technique 

discussed in ( 5 )  for estimating certain partial derivatives. 
We shall assume tho results (and the notation) in 

of (4); if the summary of (2) given in 
this paper is independent of (3). 

gsl to 7 * 

f %  of (5)  is accepted, 
The work in (2) depends 

essentially on the evenness of t(t) and is irrelevant here. 
\ -, 
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2. 

denotes the solution of (1.3) for which X(o)= a, J?(O)S b, 
we define T(a,b) by 

ToDo1oRica.l transformations of the Dlane, If x ( k ;  a, b; 0) 

l ( a ,  b) = (X  (Zr; a, b;O), 2 (ZU; Q, b;O)) .  

we zecall (see, for examplo Levinson t i ) )  that T is 
topological, that, since P(t) has period 2s. 

T ( a ,  b). = (x (tmu; a, b; 01, 2 ( Z m r ;  O)), 

and that x(t;a,b;O) has 2 m r  as a period if and Only if 

T"(a,b) = ( a , b ) .  

In this paper dashes will not be used a8 symbols of 

differentiation but only as labels, in particular as labels 

for transformed points and function8 connected with them: 

for example, we shall usually write (a', b') 

Proof' of Theorem 1. We note that a star-like simple closed 

curve must have the origin in its Interior.' T a k h l a r  

coordinates with pole and suppose- c and uc have 

for Tm(a, a). 

# 

equations r 5 y(8) and -t = f ( B )  , each of r ( 8 )  and 

y' (  8) being positive and continuous and having period 2s . 
Then the difference of the areas inside c and uc tu  

Since the integrand is continuous and periodic there are 

at least two values B , inoongruent (mod Z T )  , 
for which y (e) = y' (0) .  

L3MA 1. T is area-Dreserving, - 
. For any (u, b) , write a (t> = ~ ( t ;  a, b;  0 )  

. and (a') b') = T (a, b )  . Then the Wronskian, W(4) sap, 

of those solutions )I (4) and )L ( t )  of 
I 

I ' .  
i 



0.d . 

3, The arrangement of the calculations. From here onwards 

we write (a', b') c- T-(q., b), nr, being taken as a constant. 
When we seek a curve which I s  star-like for 7: we are 

seeking points whose coordinates satisfy 

We shall determine arcs, parametrized either as (a(b1, b )  or 

(a,, b(a)) , composed of points whose coordinates satisfy 
(3.1). If we appeal to the standard implicit function theorem 

we must show either ai/aa or aslab 
order to do this we estimate, in 95, the elements of the 

different from 0, &d in 

Jacobian matrix 2(a', b ' ) /$(a ,  b) . Before this, in 

. After thew 3 4, we estimate $(a, b)/_a(h,, , q,) 
preparations we can produce a star-like o w e  in f6 and prove 

Theorem 2. 

The estimation of P ( U , b ) / $ ( h , ,  rp,) , although of the 
type we met in (4), is suffioiently different to need to be 

given in some detail. Our other calculations are so li~ht or so 

similar to those in (4,) that we om abridge or suppresr our  

- 

discussion of them. 

It will be clear that, if we chose, we could arrange to 
obtain more detailed information about periodio solutions of 

(1.3), especially if we varied the hypotheses on #($) and 

considered relations such as m GAk instead of taking 'IIL 

as a constant. However, the teohnique of estimation ha8 beea 

amply illustrated in (5 ) ;  we therefore aim to shov the 

application of Theorea 1 a8 simply as possible and do not atrive 

after such detall. ' 

. 
8 / 

. 
! 
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4. The esti:?ation of 

solution x (t; Q, b; 0) 

- d ( a , ' b ) / g ( h , ,  qJ . Consider the 
of (1.3) in the case when a30,' b e o  .. 

Whether bL+aCt*  
specified by giving t& , the value of .t at vhich the laat . 

is large or not, this solution may also be 

BaXiInIXI before f = o ocourred ( Q~ being o if b - O 1, - 
and ho- , the value of that maximum. It will bo antioipeted 

that if. bL + a* ; 

in our error terms we shall most often use suitablo powerr of 

ho 
in tams a i  ,arsdustr ruah 

by b which could bo mall. 

is large it ib approximately equal to 

alone, but i t  will sometimes be neoessary to estimate 
. - s  

"e that we EW la_trr divide -' ' 3  

It will be useful to speoialise aome identities. (We give 

reference numbers from (2) in square braokets.) 
putting x o = o  in (2.51 we find 

First, by 

t 
h4(t)  = bL+ a* + 2 1  p(t'1 Jl(4')d.t:. 

and this gives, if we vrite a = hod 

Rewriting this as 

and remembering that b \< 0 , we deduce that 
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Secondly, by writing 

.t (h, C)  we obtain 

3 = o( in the 'expression 14-41 for 

Finally we observe that since l z w p  ( 4 )  d t  = 0 

is no lo&s of generality in' prescribing that p ( 0 )  -- 0 . there 

This simplifies some details; it also gives minor improvements 

in our  estinations but these are inessential. 

- L M A  2. ff b'+ a' is lame, so is ho - 
bx -t 4 = ho4+Q(/-d)  = h:+Q(/), 

I -  d - Q (b'hi")= l?(81h,-'l, 
. A/- d4) - b h0-' + Q (Ibj hoe'). (4.4) - LEI4MA 3. For larm ho , in the case a 3 0, b B 0, p(O)=q 

(a- bg)h0-' + f? (hi') - b + Q ( % ' )  

- a (h,? %I ( L(b+a3y: lg1+ Q(hi') ctd + Q (h;') 
tl(a, a) - -- 

By f4.8) we know that a X  / a  ho = Q (h i?)  and 

hence, by substitution in [4.7], that 

a f / d h o  = Q(h.."), 
where we have reduced our error term from 0 (&') to 

()air) by using p(o)= (I . Differentiate (4.3) with 

respect to ho ; we obtain, when we use (4.2), 

end t h i  :1ves 

. 
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\le need this form with b as a factor in the error term for. 

t he  ir-xediately following work; a fortiori it gives the result 

enunciated. 

If we now differentiate (4.J) with respect to ho we - 
obtain 

a further term on the right being suppressed sinoe 

pi.$(hed)I = p ( 0 )  = 0 .. Each of the tehr involving an 
intoaral is ? { ( / - d ) h : ' )  Q (lbl hi3)  , and 
straightforward substitution giver 

. 
' 

I? b # 0 , our ertimate of 8b/dho 
we aee from the meaning of the symbol8 that 3blab-o and 

b e a,'% = 0 , and our estimate ir again valid. 

iollowr; if b - 0 , 
Very similarly, by differentiating (4.3) and (4.1) with 

respect to Q, we establish our estimator for act/aB 

a b / a p o  We need to reoall that by [4.9] 

and 

a . t / a  qo - t + dQ(hi4) 
and to observe that thlr giver a f / a k ,  = Q(hl')  . 
5. The estimation 2 (d7 b' ) / j  (a, b )  . SUppo80 

that (CL,b) satirfier (3.1). We arrume, a8 in f4, that 
a 3 0 and b 6 0 
our enunciationel it implier, rincr (a', b') l ie8 
on tho same ray through Q a8 (a, b )  
b' 6 0 I? ba+ a* is euitably lerge we e x p o t  that 

but no longer inolride thir hypothe818 in 

, thrb a' PI 0 

, the solution X (t; a, b; 0 )  
and negative minima In 0s 4 
We 8- 8haV it i r  COlUiatmt with 

I 

i .  
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I 

! 
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our previous notation to write Qo and tp+- for the values 

of .f at which the maxima preceding (or at) z s  0 and 

d = Z m l r  occur. This notation implies that the solution 
describes ~lr cycles in yo C 8 d Q&- . Evidently 

Once we have verified that 

n, 
the rcatrices on the right-hand 8idm. 

%a &ail continue to assume 

Q+m i8 defined and have shown that 
is not too large oompared with k, we know how to estimate, ' 

p ( 0 )  = 0 but no longer 

include this hypothesis in our enunoiations. 

- LEMMA 4. &g-(a,b)  satisflea (3.1) 4 is larm, 

- then CP+- is defined and there is a eonstant K such that 

7~ < Kko . Further, 
a' = a { I +  Q(<')I, 
b' = b { / + Q(h;')) 

- and Q* VI. - 2 - t  - Qo -t- QWiaJ. 

We know that-when p is given there is an 1?- R(p)  
with the property that if he 7 and t v  4 p Lo then 

3 

is defined. For definitenee8 take p = / . By an 4p4 Y 

eviden: modification of [2.8], 

Qqp Qe RB(v--I)G1 t Q(J8&'), 
the right-hand side of whioh exaeeda 2 - r  if he 
and Y 7 f k: . This is to that, for large ho , 

is large 

a Q w  is defined suah thrt ' 

7 2 r n l - i  y* 7 . l t w % r .  . .  94 Y 

Hence yen. is definable and va have at onoe. % .IL 44. . .  
I 
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From 

it follows that if ve write t m / w  we have 7~ kh. 
for large &. 

LEXKA 2. Under the hywtheses of Lemma 4 
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by the methods of (4). - 

LDMA 8. Under the hYDotheSe6 of L e m a  4, - 

6, A curve star-like for T"r From (9 we know that when ' 

m and n are suitably restricted there is a unique root ,of 

Qa- h, 0)  ~ -wp (6.1) 
in particular, when tlt is fixed there is a unique root for 
each large R, . It will be olear that by trivial modification8 
of the argument we can show that there 18 a unique root of. 

%* ( h o ,  0 )  = 2 - r .  3 (6.2) 

Vhen we consider an even e(6) 
coincide. For a general $($) 

have different roots, and it is (6.2) which is relevant; we * 
shall write h,, for the root of (6.2). 

these two unique roots will . 

the equations (6.1) and (6.2) 

. .  
I .  

t , . .  

. .  
. .  . .  

: .  . 
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Mrite for the point (bo*, 0) of the (a, b ) -  plan& 

Then (6.2) implies that all the stationary points of 

x(.t;k,,~; 0) or x~(.t; e; 0)' say, are positive 

maxima or negative minima and tha d- there are n. of each in 

0 6 < zmr. Further, is the only point on the 

positive &axis with these properties, 

Similarly, if we specify a solution of (1.3) as 

x ( X ;  0, -h;; ql) 
and, again by trivial modifloations of our previow arguments, ' 

can show that 

we can consider the function v~, . ,+~ (his CP,) 

rr 
has a unique root, say 

Then 8 and T-E 
b -axis and 

3c ( k ;  p ;  0) . In exactly the same way we find point8 

(-h:, 0) (0, b*') , say and , whose transforms 
by 1- lie on the same half-axis as the initial points. 

Finally we observe that if he 

h: Writoe t o r  the point (O,-hJl e 
, both lie on the negative half of the 

is uniquely characterized by the properties of 

* 
is the root o f  

we obtain f e 

These remarks can be brought into a form suitable for 

application i f t  as before, we write m, e rn4-t.d and think 

of & as a iarge integer. We have 

LE"A 9. SUDDOS~ 7~ is fixed and that R is choseqr - - if m s / ,  A i s t o k  0 ;  
m O < R ' < ~ , .  #e 

numbered ( 4  = 0, /,z,s) ClOCkWlSe from the DOSitiVe 

n -ee 

u ? r ~ 7 / , d  

Then for eaoh large intemr there is a mi& 
I 



= z ( 4 )  on the i-th half-axis such that 

\ 
(i) and lie on the same half-axis, 

(ii) all the stationary Doints of X (t; ; 0)  
Ere Dositive maxima or neRative minima, and there are .ne A t A  

of each in 0 6 x  ( Z m s ,  

(iii) are uniauelr determined by (I) and (11). 

Proof of Theorem 2. For large : a$/&.# 0 at and 

so f o r  a range of b * 0 we have an arc parametrized ( a (b), b) 
a whose points satisfy (3.1). At least on a sub-aro 

is large, with a*>/ b' 
ba+ a 

, and the hypotheses of Lemma 4 

(and hence of Lemma 8)are fulfilled. The integer n, whose 

exist'cjnce is guaranteed by Lemma 4 will change aontinuously 
' and hence have 'the constant value IIL * + A  . When we apply 

Lemma a we see that on the sub-are d S / &  $= 0 and 

which gives 

large 4 ,  if the sub-arc doe6 not already reach the ourve 
h*s  b' 

d (b'+ awl/  d b -- e(/) . It follows that, for 
it can be uniguely aontlnued, with the 

. parametrization . (a(b) ,  b )  until it does, and that &'+a" 
remains large. Beyond thio we can evidently aontinue with the 

parametrization (up b(a))  
neBative b-axis with the charaoteristio properties of 5 ,  
that is at . 

until we arrive at a point on the 

If a ray through Q met this arc in two points we could, 

by oontinuously turning the ray, find a ray which touched the 

arc, contrary to the uniqueness of a ( b )  and &(a) To sea 

that the aro is s t a r & e  for T1)ue need aov only notloe that 
/ 

I. i b 
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' 0 does not l i e  on the arc s ince b2+ae remains large. 

Similarly can be joined t o  E ,  t o  and 

t o  ;p* . Write c(k)  f o r  the curve formed by 

. these arcs, then c and r - s a t i s f y  the hypotheses of 

Theoren 1. Hence we have, f o r  each large 4 , at least two 

points fixed under TY say Q, ( 4 )  and Q, ( 4 )  , and 

t h i s  means t h a t  ~ ( k ;  Q1(J); 0)  and X ( t ;  4,(4); 0) 
have 2-r as a period. F ina l ly  t h i s  must be the least period 

sinceeach of these so lu t ions  has m*+,d maxima in 

04x  2 - n .  

COROLLARY, For apg m, a 4  a 4 ,  
there are a t  least two solut lons of (1.3) with least WrlOq 

Z m l r  , desoribi  
b"+ a* (4+~ym)~tu~+ h ( . ) .  ' 

&+A oucles i n  t h i s  1) eriod and With 

0 .  

I 8houl4 l i ke  t o  thank Proferror J. J. Mahony for readin& 
and oomc?en!ln# on ruooesrlve werrionr of j1. 
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